Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 43(10): 1454-1471, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35790048

RESUMO

Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Microcefalia , Triptofano-tRNA Ligase , Animais , Humanos , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Ligases , Microcefalia/genética , Microcefalia/patologia , RNA de Transferência , Triptofano-tRNA Ligase/genética , Peixe-Zebra/genética
2.
Am J Med Genet A ; 188(2): 606-612, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34644002

RESUMO

Short stature is one of the most common reasons for a referral to the pediatric endocrinology clinic. Thousands of patients with short stature are assessed annually at the Department of Endocrine and Metabolic Diseases (DEMD) at Bab el Oued University Hospital in Algiers, Algeria. However, diagnostic rates in patients with syndromic short stature are not optimal due to the unavailability of next generation sequencing (NGS) technology. Here, we enrolled 10 Algerian patients with syndromic short stature in a pilot study to test the impact of genetic and genomic approaches in the DEMD. Using a combination of two different NGS modalities, namely exome sequencing and the Mendeliome (TruSight™ One sequencing panel) along with single gene testing, we were able to establish a confirmed molecular diagnosis in 7/10 patients (70%) and to identify strong likely disease-causing variants in a further two patients. Novel variants in NPR2 and VPS13B were identified. Using copy number variation analysis on the exome data, we also identified a de novo deletion of the short arm of chromosome X. These definitive diagnoses have made a substantial impact on patient treatment, management and genetic counseling. Genomic testing has the ability to transform clinical practice, and is an essential diagnostic tool in any tertiary pediatric clinic, particularly in resource limited settings.


Assuntos
Variações do Número de Cópias de DNA , Nanismo , Argélia/epidemiologia , Criança , Variações do Número de Cópias de DNA/genética , Nanismo/diagnóstico , Nanismo/genética , Exoma/genética , Humanos , Projetos Piloto
3.
Am J Med Genet A ; 185(4): 1216-1221, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33427397

RESUMO

Intellectual disability (ID) has an estimated prevalence of 1.5%-2%. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that sporadic ID cases result from de novo mutations in genes associated with ID. Here, we report on a 10-year-old girl, who has been regularly presented in our neuropediatric and genetic outpatient clinic. A median cleft palate and a heart defect were surgically corrected in infancy. Apart from ID, she has behavioral anomalies, muscular hypotonia, scoliosis, and hypermobile joints. The facial phenotype is characterized by arched eyebrows, mildly upslanting long palpebral fissures, prominent nasal tip, and large, protruding ears. Trio WES revealed a de novo missense variant in MEIS2 (c.998G>A; p.Arg333Lys). Haploinsufficiency of MEIS2 had been discussed as the most likely mechanism of the microdeletion 5q14-associated complex phenotype with ID, cleft palate, and heart defect. Recently, four studies including in total 17 individuals with intragenic MEIS2 variants were reported. Here we present the evolution of the clinical phenotype and compare with the data of known individuals.


Assuntos
Fissura Palatina/genética , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Criança , Pré-Escolar , Fissura Palatina/complicações , Fissura Palatina/patologia , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Cariótipo , Estudos Longitudinais
4.
Front Mol Neurosci ; 11: 252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123105

RESUMO

Mutations in genes that encode proteins of the SWI/SNF complex, called BAF complex in mammals, cause a spectrum of disorders that ranges from syndromic intellectual disability to Coffin-Siris syndrome (CSS) to Nicolaides-Baraitser syndrome (NCBRS). While NCBRS is known to be a recognizable and restricted phenotype, caused by missense mutations in SMARCA2, the term CSS has been used lately for a more heterogeneous group of phenotypes that are caused by mutations in either of the genes ARID1B, ARID1A, ARID2, SMARCA4, SMARCB1, SMARCE1, SOX11, or DPF2. In this review, we summarize the current knowledge on the phenotypic traits and molecular causes of the above named conditions, consider the question whether a clinical distinction of the phenotypes is still adequate, and suggest the term "SWI/SNF-related intellectual disability disorders" (SSRIDDs). We will also outline important features to identify the ARID1B-related phenotype in the absence of classic CSS features, and discuss distinctive and overlapping features of the SSRIDD subtypes. Moreover, we will briefly review the function of the SWI/SNF complex in development and describe the mutational landscapes of the genes involved in SSRIDD.

5.
Am J Med Genet A ; 170(12): 3282-3288, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27530281

RESUMO

Kabuki syndrome (KS) is a rare developmental disorder characterized by multiple congenital malformations, postnatal growth retardation, intellectual disability, and recognizable facial features. It is mainly caused by mutations in either KMT2D or KDM6A. We describe a 14-year-old boy with KS presenting with an unusual combination of bilateral microphthalmia with orbital cystic venous lymphatic malformation and neonatal cholestasis with bile duct paucity, in addition to the typical clinical features of KS. We identified the novel KMT2D mutation c.10588delC, p.(Glu3530Serfs*128) by Mendeliome (Illumina TruSight One®) sequencing, a next generation sequencing panel targeting 4,813 genes linked to human genetic disease. We analyzed the Mendeliome data for additional mutations which might explain the exceptional clinical presentation of our patient but did not find any, leading us to suspect that the above named symptoms might be part of the KMT2D-associated spectrum of anomalies. We thus extend the range of KS-associated malformations and propose a hypothetical connection between KMT2D and Notch signaling. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Ductos Biliares/anormalidades , Colestase/diagnóstico , Face/anormalidades , Doenças Hematológicas/diagnóstico , Microftalmia/diagnóstico , Fenótipo , Doenças Vestibulares/diagnóstico , Adolescente , Consanguinidade , Exoma , Fácies , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Exame Físico , Locos de Características Quantitativas
6.
Am J Med Genet A ; 170(10): 2644-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27240540

RESUMO

Baraitser-Winter cerebrofrontofacial syndrome is caused by heterozygous missense mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1. Recently, we characterized the large cohort of 41 patients presenting with this condition. Our series contained 34 patients with mutations in ACTB and only nine with ACTG1 mutations. Here, we report on seven unrelated patients with six mutations in ACTG1-four novel and two previously reported. Only one of seven patients was clinically diagnosed with this disorder and underwent ACTB/ACTG1 targeted sequencing, four patients were screened as a part of the large lissencephaly cohort and two were tested with exome sequencing. Retrospectively, facial features were compatible with the diagnosis but significantly milder than previously reported in four patients, and non-specific in one. The pattern of malformations of cortical development was highly similar in four of six patients with available MRI images and encompassed frontal predominant pachygyria merging with the posterior predominant band heterotopia. Two remaining patients showed mild involvement consistent with bilaterally simplified gyration over the frontal lobes. Taken together, we expand the clinical spectrum of the ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome demonstrating the mild end of the facial and brain manifestations. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Actinas/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Mutação de Sentido Incorreto , Biomarcadores , Encéfalo/patologia , Pré-Escolar , Análise Mutacional de DNA , Exoma , Fácies , Feminino , Estudos de Associação Genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Fenótipo
7.
Hum Mutat ; 37(9): 847-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302555

RESUMO

Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up-to-date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well-defined X-linked KS type 2, and comment on phenotype-genotype correlations as well as sex-specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki-like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/genética , Histona Desmetilases/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/patologia , Face/patologia , Feminino , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Doenças Hematológicas/patologia , Humanos , Masculino , Herança Materna , Síndrome de Noonan/genética , Análise de Sequência de DNA , Doenças Vestibulares/patologia
8.
Am J Med Genet A ; 170(3): 728-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26640080

RESUMO

Using whole-exome sequencing, we identified a homozygous acceptor splice-site mutation in intron 6 of the KATNB1 gene in a patient from a consanguineous Turkish family who presented with congenital microcephaly, lissencephaly, short stature, polysyndactyly, and dental abnormalities. cDNA analysis revealed complete loss of the natural acceptor splice-site resulting either in the usage of an alternative, exonic acceptor splice-site inducing a frame-shift and premature protein truncation or, to a minor extent, in complete skipping of exon 7. Both effects most likely lead to complete loss of KATNB1 function. Homozygous and compound heterozygous mutations in KATNB1 have very recently been described as a cause of microcephaly with brain malformations and seizures. We extend the KATNB1 associated phenotype by describing a syndrome characterized by primordial dwarfism, lissencephaly, polysyndactyly, and dental anomalies, which is caused by a homozygous truncating KATNB1 mutation.


Assuntos
Nanismo/genética , Homozigoto , Lisencefalia/genética , Microcefalia/genética , Mutação , Sindactilia/genética , Pré-Escolar , Análise Mutacional de DNA , Nanismo/diagnóstico , Exoma , Feminino , Ordem dos Genes , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lisencefalia/diagnóstico , Imageamento por Ressonância Magnética , Microcefalia/diagnóstico , Linhagem , Fenótipo , Sindactilia/diagnóstico , Síndrome
9.
Mol Genet Genomic Med ; 3(5): 467-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436113

RESUMO

Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.

10.
J Clin Invest ; 125(9): 3585-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26280580

RESUMO

The genetic disorder Kabuki syndrome (KS) is characterized by developmental delay and congenital anomalies. Dominant mutations in the chromatin regulators lysine (K)-specific methyltransferase 2D (KMT2D) (also known as MLL2) and lysine (K)-specific demethylase 6A (KDM6A) underlie the majority of cases. Although the functions of these chromatin-modifying proteins have been studied extensively, the physiological systems regulated by them are largely unknown. Using whole-exome sequencing, we identified a mutation in RAP1A that was converted to homozygosity as the result of uniparental isodisomy (UPD) in a patient with KS and a de novo, dominant mutation in RAP1B in a second individual with a KS-like phenotype. We elucidated a genetic and functional interaction between the respective KS-associated genes and their products in zebrafish models and patient cell lines. Specifically, we determined that dysfunction of known KS genes and the genes identified in this study results in aberrant MEK/ERK signaling as well as disruption of F-actin polymerization and cell intercalation. Moreover, these phenotypes could be rescued in zebrafish models by rebalancing MEK/ERK signaling via administration of small molecule inhibitors of MEK. Taken together, our studies suggest that the KS pathophysiology overlaps with the RASopathies and provide a potential direction for treatment design.


Assuntos
Anormalidades Múltiplas/genética , Exoma , Face/anormalidades , Doenças Hematológicas/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Proteínas de Ligação a Telômeros/genética , Doenças Vestibulares/genética , Proteínas de Peixe-Zebra/genética , Anormalidades Múltiplas/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Bovinos , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Doenças Hematológicas/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratos , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo , Doenças Vestibulares/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
11.
Hum Mol Genet ; 23(16): 4396-405, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705355

RESUMO

CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding gene CHD7. Kabuki syndrome, another developmental disorder, is characterized by typical facial features in combination with developmental delay, short stature, prominent digit pads and visceral abnormalities. Mutations in the KMT2D gene, which encodes a H3K4 histone methyltransferase, are the major cause of Kabuki syndrome. Here, we report a patient, who was initially diagnosed with CHARGE syndrome based on the spectrum of inner organ malformations like choanal hypoplasia, heart defect, anal atresia, vision problems and conductive hearing impairment. While sequencing and MLPA analysis of all coding exons of CHD7 revealed no pathogenic mutation, sequence analysis of the KMT2D gene identified the heterozygous de novo nonsense mutation c.5263C > T (p.Gln1755*). Thus, our patient was diagnosed with Kabuki syndrome. By using co-immunoprecipitation, immunohistochemistry and direct yeast two hybrid assays, we could show that, like KMT2D, CHD7 interacts with members of the WAR complex, namely WDR5, ASH2L and RbBP5. We therefore propose that CHD7 and KMT2D function in the same chromatin modification machinery, thus pointing out a mechanistic connection, and presenting a probable explanation for the phenotypic overlap between Kabuki and CHARGE syndromes.


Assuntos
Anormalidades Múltiplas/metabolismo , Síndrome CHARGE/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Doenças Hematológicas/metabolismo , Proteínas de Neoplasias/metabolismo , Doenças Vestibulares/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Síndrome CHARGE/genética , Síndrome CHARGE/patologia , Criança , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Face/patologia , Células HeLa/citologia , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
12.
Hum Mol Genet ; 22(25): 5121-35, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23906836

RESUMO

Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.


Assuntos
Anormalidades Múltiplas/genética , Montagem e Desmontagem da Cromatina/genética , Face/anormalidades , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Hipotricose/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Deleção de Sequência/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Proteínas de Transporte/genética , Criança , Pré-Escolar , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Face/patologia , Fácies , Feminino , Deformidades Congênitas do Pé/patologia , Deformidades Congênitas da Mão/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipotricose/patologia , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Cariotipagem , Masculino , Micrognatismo/patologia , Mutação de Sentido Incorreto , Pescoço/patologia , Proteínas Repressoras , Proteína SMARCB1 , Fatores de Transcrição/genética
13.
Am J Hum Genet ; 93(1): 181-90, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23830518

RESUMO

Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism.


Assuntos
Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Doenças Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Deleção de Sequência , Proteínas de Transporte Vesicular/metabolismo , Adolescente , Adulto , Ataxia/genética , Mapeamento Cromossômico , Consanguinidade , Creatina Quinase/sangue , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Exoma , Feminino , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Homozigoto , Humanos , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Masculino , Transtornos dos Movimentos/patologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Linhagem , Ligação Proteica , Transporte Proteico , Sítios de Splice de RNA , Síria , Proteínas de Transporte Vesicular/genética , Adulto Jovem
14.
Am J Med Genet A ; 161A(6): 1475-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23636941

RESUMO

Limb patterning and growth are complex embryonic processes in which the elaborately orchestrated interplay of diverse endocrine and paracrine factors is crucial to limb integrity. LRP4 is a lipoprotein receptor known for its regulatory effects on LRP5- and LRP6-mediated Wnt signaling, a pathway that plays a pivotal role in limb development. Recessive mutations in LRP4 have been shown to cause Cenani-Lenz syndrome, which is characterized by severe limb malformations, an unusual face, and renal abnormalities. We report on a child with severe Cenani-Lenz syndrome caused by a novel homozygous nonsense mutation in LRP4. The severity of the phenotype in a patient with absent residual LRP4 function may point to a genotype-phenotype correlation.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Relacionadas a Receptor de LDL/genética , Deformidades Congênitas dos Membros/genética , Sindactilia/genética , Anormalidades Múltiplas/diagnóstico , Códon sem Sentido , Estudos de Associação Genética , Homozigoto , Humanos , Lactente , Proteínas Relacionadas a Receptor de LDL/metabolismo , Deformidades Congênitas dos Membros/diagnóstico , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA , Transdução de Sinais , Sindactilia/diagnóstico
15.
Eur J Hum Genet ; 20(6): 639-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22234151

RESUMO

Indian hedgehog (Ihh) signaling is a major determinant of various processes during embryonic development and has a pivotal role in embryonic skeletal development. A specific spatial and temporal expression of Ihh within the developing limb buds is essential for accurate digit outgrowth and correct digit number. Although missense mutations in IHH cause brachydactyly type A1, small tandem duplications involving the IHH locus have recently been described in patients with mild syndactyly and craniosynostosis. In contrast, a ∼600-kb deletion 5' of IHH in the doublefoot mouse mutant (Dbf) leads to severe polydactyly without craniosynostosis, but with craniofacial dysmorphism. We now present a patient resembling acrocallosal syndrome (ACS) with extensive polysyndactyly of the hands and feet, craniofacial abnormalities including macrocephaly, agenesis of the corpus callosum, dysplastic and low-set ears, severe hypertelorism and profound psychomotor delay. Single-nucleotide polymorphism (SNP) array copy number analysis identified a ∼900-kb duplication of the IHH locus, which was confirmed by an independent quantitative method. A fetus from a second pregnancy of the mother by a different spouse showed similar craniofacial and limb malformations and the same duplication of the IHH-locus. We defined the exact breakpoints and showed that the duplications are identical tandem duplications in both sibs. No copy number changes were observed in the healthy mother. To our knowledge, this is the first report of a human phenotype similar to the Dbf mutant and strikingly overlapping with ACS that is caused by a copy number variation involving the IHH locus on chromosome 2q35.


Assuntos
Síndrome Acrocalosal/genética , Genes Duplicados , Proteínas Hedgehog/genética , Anormalidades Múltiplas/genética , Síndrome Acrocalosal/metabolismo , Adulto , Criança , Feminino , Humanos , Recém-Nascido , Deformidades Congênitas dos Membros/genética , Masculino , Polimorfismo de Nucleotídeo Único , Sindactilia/genética
16.
Hum Genet ; 130(6): 715-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21607748

RESUMO

Kabuki syndrome (KS) is one of the classical, clinically well-known multiple anomalies/mental retardation syndromes, mainly characterized by a very distinctive facial appearance in combination with additional clinical signs such as developmental delay, short stature, persistent fingerpads, and urogenital tract anomalies. In our study, we sequenced all 54 coding exons of the recently identified MLL2 gene in 34 patients with Kabuki syndrome. We identified 18 distinct mutations in 19 patients, 11 of 12 tested de novo. Mutations were located all over the gene and included three nonsense mutations, two splice-site mutations, six small deletions or insertions, and seven missense mutations. We compared frequencies of clinical symptoms in MLL2 mutation carriers versus non-carriers. MLL2 mutation carriers significantly more often presented with short stature and renal anomalies (p = 0.026 and 0.031, respectively), and in addition, MLL2 carriers obviously showed more frequently a typical facial gestalt (17/19) compared with non-carriers (9/15), although this result was not statistically significant (p = 0.1). Mutation-negative patients were subsequently tested for mutations in ten functional candidate genes (e.g. MLL, ASC2, ASH2L, and WDR5), but no convincing causative mutations could be found. Our results indicate that MLL2 is the major gene for Kabuki syndrome with a wide spectrum of de novo mutations and strongly suggest further genetic heterogeneity.


Assuntos
Anormalidades Múltiplas/genética , Doenças Hematológicas/genética , Mutação , Doenças Vestibulares/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Éxons , Face/anormalidades , Feminino , Heterogeneidade Genética , Heterozigoto , Humanos , Masculino , Proteínas de Neoplasias/genética , Fenótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA